Synthesis and coordination chemistry of *ortho*-perfluoroalkylderivatised triarylphosphines

Ben Croxtall, John Fawcett, Eric G. Hope and Alison M. Stuart*

Department of Chemistry, University of Leicester, Leicester, UK LE1 7RH. E-mail: amc17@le.ac.uk

Received 15th August 2001, Accepted 16th November 2001 First published as an Advance Article on the web 28th January 2002 DALTON FULL PAPER

the two novel phosphines, PPh₂(2-C₆H₄C₆F₁₃) **II** and P(4-C₆H₄C₆F₁₃)₂(2-C₆H₄C₆F₁₃) **V**, have been synthesised and their coordination chemistry investigated and compared with that of the *ortho*-trifluoromethyl-derivatised ligand, PPh₂(2-C₆H₄CF₃) **VI**. The single crystal X-ray structures of Ph₂P(O)(2-C₆H₄C₆F₁₃) and Ph₂P(O)(2-C₆H₄CF₃), along with that of PPh₂(2-C₆H₄CF₃), are reported and compared with each other. The large steric influence of the *ortho*trifluoromethyl and -perfluorohexyl substituents results in the formation of the, normally, less-thermodynamically favoured *trans*-[PtCl₂L₂] complexes. Analysis of the single crystal X-ray structures of *trans*-[PtCl₂{PPh₂(2-C₆H₄-CF₃)₂] **1**, *trans*-[PtCl₂{PPh₂(2-C₆H₄C₆F₁₃)₂] **2** and *trans*-[RhCl(CO){PPh₂(2-C₆H₄CF₃)₂] **4** reveals a larger cone angle for PPh₂(2-C₆H₄CF₃) (169°) than for PPh₂(2-C₆H₄C₆F₁₃). An average cone angle of 166° was calculated for the latter phosphine with values ranging from 164 to 168°.

In order to establish the steric and electronic effects of fluorous ponytails in the ortho-positions of triarylphosphines

Introduction

It is becoming increasingly important that expensive metal catalysts in selective homogeneous catalytic processes can be recovered and recycled efficiently. Since fluorous biphase catalysis¹ offers the benefits of both homogeneous catalysis and heterogeneous separation of the catalyst from the product, it has been receiving considerable attention recently and work in this area has been extensively reviewed.² This new strategy has now been applied to a wide range of catalytic processes such as hydroformylation,^{1,3} hydrogenation,^{4,5} hydroboration,⁶ oxidation⁷ and carbon–carbon bond forming reactions.⁸

We have recently described a two step synthesis to perfluoroalkyl-derivatised triarylphosphine ligands^{9,10} and examined the coordination of these ligands to transition metals.^{10,11} As well as establishing the criteria for preferential solubility in perfluorocarbon solvents, we have investigated the electronic and steric influence of the perfluorohexyl groups in the *meta-* and *para*derivatised ligands using spectroscopic methods^{10,11} and used the fluorous biphase hydrogenation of styrene as a model system to establish the influence of the fluorous substituents on the rates of a catalytic reaction.⁵

Preliminary work has also shown that it is not possible to form the tris-derivatised ortho-substituted phosphine, P(2-C₆- $H_4C_6F_{13}$)₃. Although 2-(tridecafluorohexyl)bromobenzene I undergoes lithium/bromine exchange with n-butyllithium, when it subsequently reacts with phosphorus trichloride it does not undergo complete substitution and the main product is CIP- $(2-C_6H_4C_6F_{13})_2$ (Fig. 1).¹² Presumably, this occurs because of the steric congestion around the phosphorus atom caused by the two ortho-C₆F₁₃ ponytails. The X-ray crystal structure of ClP- $(2-C_6H_4C_6F_{13})_2$ has shown that there are short intramolecular interactions between phosphorus and fluorine atoms on the perfluoroalkyl substituents and consequently this compound is both air- and moisture-stable. Here, we have extended this work and synthesised the two new ligands, $PPh_2(2-C_6H_4C_6F_{13})$ II and P(4-C₆H₄C₆F₁₃)₂(2-C₆H₄C₆F₁₃) V, and investigated their coordination chemistry in order to study both the steric and electronic influences of the fluorous ponytails in the orthopositions.

Fig. 1 (i) $F_{13}C_6I$, Cu, 2,2'-bipyridine, DMSO, fluorobenzene, 70 °C, 72 h; (ii) *n*-BuLi, Et₂O, -78 °C; (iii) PCl₃, Et₂O; (iv) Ph₂PCl, Et₂O; (v) ClP(4-C₆H₄C₆F₁₃)₂ **IV**, Et₂O.

Results and discussion

Synthesis and characterisation of phosphines (II) and (V)

The selective copper coupling reaction of 2-bromoiodobenzene with perfluorohexyl iodide was used to prepare 2-(trideca-fluorohexyl)bromobenzene I (Fig. 1). The reaction of I with *n*-butyllithium in ether at -78 °C proceeded smoothly and the aryllithiate was subsequently reacted with chlorodiphenyl-phosphine to give the new *ortho*-derivatised phosphine, PPh₂-(2-C₆H₄C₆F₁₃) II, in 42% yield.

Since we have already shown that the tris-derivatised *ortho*substituted phosphine, P(2-C₆H₄C₆F₁₃)₃, could not be prepared ¹² and that three perfluoroalkyl groups are normally required for preferential perfluorocarbon solubility,⁹ we have synthesised the novel tris-derivatised triarylphosphine V with perfluoroalkyl groups in the *ortho-* and *para*-positions. The first step in this synthesis was the preparation of an analogue of chlorodiphenylphosphine, ClP(4-C₆H₄C₆F₁₃)₂ **IV**, using established methodologies. After lithiating 4-(tridecafluorohexyl)bromobenzene, two equivalents were reacted with diethylphosphoramidous dichloride, Et₂NPCl₂, to give the intermediate, Et₂NP(4-C₆H₄C₆F₁₃)₂ **III**. Hydrogen chloride was then passed over a stirred solution of Et₂NP(4-C₆H₄C₆F₁₃)₂ to form ClP(4-C₆H₄C₆F₁₃)₂ **IV** as a white crystalline solid in an

DOI: 10.1039/b107390g

J. Chem. Soc., Dalton Trans., 2002, 491–499 491

	Ligand	$\delta_{\mathbf{P}}$ (CDCl ₃)
^{<i>a</i>} Data taken from ref. 10. ^{<i>b</i>} Data t	PPh ₃ PPh ₂ (2-C ₆ H ₄ CF ₃) PPh ₂ (2-C ₆ H ₄ C ₆ F ₁₃) II PPh ₂ (3-C ₆ H ₄ C ₆ F ₁₃) ^{<i>a</i>} PPh ₂ (4-C ₆ H ₄ C ₆ F ₁₃) ^{<i>b</i>} P(4-C ₆ H ₄ C ₆ F ₁₃) ₂ (2-C ₆ H ₄ C ₆ F ₁₃) V P(4-C ₆ H ₄ C ₆ F ₁₃) ₂ ^{<i>b</i>} raken from ref. 9.	$\begin{array}{l} -5.0 \text{ (s)} \\ -10.9 \text{ (q, } {}^{4}J_{\mathrm{PF}} 53 \text{ Hz}) \\ -6.7 \text{ (ttt, } {}^{4}J_{\mathrm{PF}} 99, {}^{5}J_{\mathrm{PF}} 49, {}^{6}J_{\mathrm{PF}} 4 \text{ Hz}) \\ -4.8 \text{ (s)} \\ -5.0 \text{ (s)} \\ -6.3 \text{ (tt, } {}^{4}J_{\mathrm{PF}} 98, {}^{5}J_{\mathrm{PF}} 49 \text{ Hz}) \\ -6.0 \text{ (s)} \end{array}$

overall yield of 41%. 2-(Tridecafluorohexyl)bromobenzene I was then lithiated with *n*-butyllithium before being reacted with ClP(4-C₆H₄C₆F₁₃)₂ to give the new ligand, P(4-C₆H₄C₆F₁₃)₂-(2-C₆H₄C₆F₁₃) V.

Both ligands II and V, which are air-stable in the solid-state but oxidise in solution, have been fully characterised by elemental analysis, mass spectrometry and multinuclear NMR spectroscopies (see Experimental). The ³¹P{¹H} NMR spectra of both compounds showed a 7 line pattern corresponding to an overlapping triplet of triplets which arose from "throughspace" P-F spin-spin couplings (Table 1). This phenomenon has been observed previously¹³ in the series of ortho-derivatised triarylphosphines with one, two and three trifluoromethyl groups. For example, the ${}^{31}P{}^{1}H{}$ spectrum of $PPh_2(2-C_6H_4-$ CF₃) VI is a quartet at -10.9 ppm with a ${}^{4}J_{PF}$ coupling constant of 53 Hz. With both phosphines II and V there are much larger ${}^{4}J_{\rm PF}$ coupling constants of approximately 99 Hz presumably due to shorter intramolecular P-F distances. These phosphines also contain an additional ${}^{5}J_{\rm PF}$ coupling constant which is approximately half of the ${}^{4}J_{\rm PF}$ coupling constant and this explains why the overlapping triplet of triplets appears as a 7 line pattern. Furthermore, II also contained a ${}^{6}J_{PF}$ coupling to the γ -CF₂'s. Surprisingly, both of these multiplets are centred around -6 ppm and although this is fairly typical for triarylphosphines, an upfield chemical shift similar to that observed for PPh₂(2-C₆H₄CF₃) had been expected for II and V due to the steric influence of the ortho substituents.14 These slightly anomalous chemical shifts together with the large ${}^{4}J_{\rm PF}$ coupling constants possibly indicate that II and V have different configurations at phosphorus than that for VI, which is supported by the crystallographic studies (vide infra). The "throughspace" P-F spin-spin coupling was also observed in the ¹⁹F{¹H} NMR spectra of both compounds giving a doublet of triplets at -100 ppm for the α -CF₂ (⁴J_{PF} = 99 Hz) and a doublet of multiplets at -119.5 ppm for the β -CF₂ (⁵J_{PF} = 47 Hz). In addition, for the mixed ligand V it was possible to distinguish between the α -CF₂'s in the *ortho*- and *para*-substituted aromatic rings at -100.1 and -111.5 ppm respectively in a 1:2 ratio in the ¹⁹F{¹H} NMR spectrum. It was also possible to distinguish between the protons on the ortho- and para-substituted aromatic rings in the proton NMR spectrum. Only the trissubstituted ligand V was preferentially soluble in perfluorocarbon solvents.

Structural studies of IIb, VIb and VI

Although we were unable to structurally characterise either **II** or **V**, we did obtain single crystals of Ph₂P(O)(2-C₆H₄C₆F₁₃) **IIb** from an ether–hexane solution of the free ligand left to stand for several weeks. In addition, single crystals of both PPh₂(2-C₆H₄CF₃) **VI** and Ph₂P(O)(2-C₆H₄CF₃) **VIb** were obtained from an ether–hexane solution of PPh₂(2-C₆H₄CF₃) **VI**. Selected bond lengths and bond angles for **IIb**, **VIb** and P(O)Ph₃ are directly compared in Table 2. Previous work has shown that for P(O)Ph₃ the mean O–P–C angle (112.4°) is greater than the mean C–P–C angle (106.4°) as a result of the repulsive effect of the short electron-rich P=O double bond.¹⁵ A similar effect is also observed for Ph₂P(O)(2-C₆H₄CF₃) **VIb**, but is slightly more pronounced (mean O–P–C = 113.3° > mean C–P–C = 105.4°) because the *ortho*-trifluoromethyl group points in the same direction as the P=O bond (Fig. 2). In fact, there seems to

Fig. 2 Molecular structure of $Ph_2P(O)(2-C_6H_4CF_3)$ VIb. Displacement ellipsoids are shown at the 30% probability level. The H atoms are omitted for clarity.

be an attractive interaction between two of the fluorines and the oxygen that causes the trifluoromethyl group to point in this direction since there are two short non-bonded O \cdots F distances of 2.858 and 2.899 Å. In contrast, the *ortho*perfluorohexyl group in Ph₂P(O)(2-C₆H₄C₆F₁₃) **IIb** radiates linearly away from the P=O bond in the opposite direction (Fig. 3). To accommodate the steric bulk of the perfluorohexyl

Fig. 3 Molecular structure of $Ph_2P(O)(2-C_6H_4C_6F_{13})$ IIb. Details as in Fig. 2.

Table 2 Selected bond lengths (Å) and angles (°) with estimated standard deviations (e.s.d.s) in parentheses for $P(O)Ph_3$, $Ph_2P(O)(2-C_6H_4C_5)$ **VIb** and $Ph_2P(O)(2-C_6H_4C_6F_{13})$ **IIb**

	P(O)Ph3 ^a	VIb	IIb
P=O	1.487(3)	1.454(4)	1.4908(17)
P–C	1.804(5)	1.787(6)	1.808(2)
P–C	1.799(5)	1.805(6)	1.809(2)
P–C	1.795(5)	1.826(6) ^b	$1.848(2)^{b}$
O-P-C	111.8(2)	114.3(3)	110.32(10)
O-P-C	113.3(2)	110.6(3)	110.90(10)
O-P-C	112.0(2)	$114.9(3)^{b}$	$107.92(10)^{b}$
Av. O–P–C	112.4	113.3	109.7
C-P-C	106.4(2)	106.0(2)	107.11(11)
C-P-C	106.4(2)	$104.8(2)^{b}$	$111.35(10)^{b}$
C-P-C	106.4(2)	$105.4(2)^{b}$	$109.26(10)^{b}$
Av. C–P–C	106.4	105.4	109.2

group the C–P–C angles increase, especially those of the phenyl ring which contains the C₆F₁₃ group, and consequently the O– P–C angles decrease with the most dramatic effect observed in the O–P–C1 angle (107.92°). As a result the mean C–P–C angle (109.2°) is now very similar to the mean O–P–C angle (109.7°). Although it is not certain that the different arrangements of the *ortho*-CF₃ and *ortho*-C₆F₁₃ units would exist in solution for the parent phosphines, these arrangements could be responsible for the differences in both δ (P) and ⁴J_{PF} coupling constants.

In previous structural determinations, we have concluded that the perfluoroalkyl groups control the solid-state packing and the preference for the fluorous ponytails to align results in fluorous domains within the structure.^{11,12} A similar conclusion can also be drawn from the crystal packing diagram of Ph₂P(O)(2-C₆H₄C₆F₁₃) **IIb** and consequently, there are three short F ··· F contacts (2.732, 2.936 and 2.993 Å) between adjacent molecules.

In the crystal structure of $PPh_2(2-C_6H_4CF_3)$ VI there are two unique molecules in the asymmetric unit (Fig. 4). Selected bond

Fig. 4 Molecular structure of one of the unique molecules of $PPh_2(2-C_6H_4CF_3)$ VI. Details as in Fig. 2.

lengths and bond angles for both of these molecules are shown in Table 3 and the P–C bond lengths are virtually the same in both molecules. However, there is a much greater variation in the C–P–C bond angles in the second molecule even though the mean value is very similar for both. The structural characterisation of PPh₃, like that for P(O)Ph₃, has shown that the

Table 3 Selected bond lengths (Å) and angles (°) with estimated standard deviations (e.s.d.s) in parentheses for PPh₃ and PPh₂(2- $C_6H_4CF_3$) VI

	PPh ₃ ^a	VI	VI
P-C	1.834(2)	1.829(2)	1.829(2)
P–C	1.832(2)	1.829(2)	1.831(2)
P–C	1.828(2)	1.848(2) ^b	$1.852(2)^{b}$
C-P-C	103.3(1)	101.82(9)	103.32(9)
C-P-C	103.3(1)	$101.92(10)^{b}$	$100.52(10)^{b}$
C-P-C	101.7(1)	$100.72(10)^{b}$	$99.98(8)^{b}$
Av. C–P–C	102.8	101.5	101.3

^{*a*} Data taken from ref. 16. ^{*b*} Denotes the carbon of the aryl ring which contains the trifluoromethyl moiety.

mean C–P–C angle (102.8°) is substantially smaller than 109.5° because of repulsion from the lone-pair site.¹⁶ A similar effect is also observed for PPh₂(2-C₆H₄CF₃) but the mean C–P–C angles are slightly smaller (101.5 and 101.3°) due to the steric bulk of the *ortho*-trifluoromethyl group which points in the same direction as the lone-pair site.

Coordination chemistry of phosphines II, V and VI

The reactions of the phosphines, PPh₂(2-C₆H₄CF₃) VI, PPh₂(2-C₆H₄C₆F₁₃) II and P(4-C₆H₄C₆F₁₃)₂(2-C₆H₄C₆F₁₃) V, with cis- $[PtCl_2(CH_3CN)_2]$ gave the platinum complexes $[PtCl_2L_2]$ {L = PPh₂(2-C₆H₄CF₃) 1, PPh₂(2-C₆H₄C₆F₁₃) 2 and P(4-C₆H₄C₆F₁₃)₂- $(2-C_6H_4C_6F_{13})$ 3} exclusively as the *trans*-isomers indicating the large steric influence of the trifluoromethyl and perfluorohexyl substituents in the ortho-positions. Normally, with conventional arylphosphine ligands, the thermodynamically favoured products are the *cis*-isomers¹⁷ and with the series of *para*derivatised phosphines, $PPh_2(4-C_6H_4C_6F_{13})$, $PPh(4-C_6H_4C_6F_{13})_2$ and $P(4-C_6H_4C_6F_{13})_3$, only the *cis*-isomers were obtained with the first two ligands, whereas a mixture of the cis- and transisomers was formed with the tris-substituted ligand.¹¹ In contrast, a mixture of the cis- and trans-isomers was obtained with the mono- and bis-meta-substituted ligands and only the transisomer was obtained with $P(3-C_6H_4C_6F_{13})_3$ demonstrating the larger steric influence of the meta-substituents over the para-C₆F₁₃ group.¹⁰ It is, therefore, not surprising that the ortho-derivatised phosphines gave the trans-isomers, especially since the cone angle of PPh₂(2-C₆H₄CF₃) has been calculated to be 175°.18

The *trans* geometries of the complexes 1–3 were established from the ³¹P{¹H} NMR data. The ³¹P{¹H} NMR spectrum of 1 appears as a virtual septet with satellites, arising from the powerful coupling between the *trans* phosphorus atoms leading to the apparent equivalent coupling to both sets of CF₃'s *i.e.* it is the A part of an AA'M₃M'₃X spectrum. Consequently, the ¹⁹F{¹H} NMR spectrum is a virtual triplet. Similarly, for complexes 2 and 3 the ³¹P{¹H} NMR spectra give virtual quintets with satellites, for the A part of an AA'M₂M'₂X spectrum but the α -CF₂ resonance in both complexes is only a broad singlet in their ¹⁹F{¹H} NMR spectra. In the latter two complexes no coupling is observed between the phosphorus and the β -CF₂'s even though this coupling was observed in the free ligands.

For the series of *trans*-[PtCl₂L₂] complexes shown in Table 4 it can be seen that ${}^{1}J_{\text{PtP}}$ increases as the number of perfluoroalkyl groups increases and this trend has been observed before with the series of *meta*-derivatised phosphines¹⁰ where the electron-withdrawing fluorous ponytails increase the π -acceptor ability of the phosphorus atoms. Similarly, in the series of *trans*-[PtClMeL₂] complexes where the ligands are all *para*substituted triarylphosphines, P(4-C₆H₄X)₃, the ${}^{1}J_{\text{PtP}}$ coupling constants increased in the order X = NMe₂ < OMe < Me < H < Cl < CF₃.²⁰ The trifluoromethyl and perfluorohexyl substituents

Table 4 ³¹P{¹H} NMR data for *trans*-[PtCl₂L₂] and *trans*-[RhCl(CO)L₂] and v(CO) for *trans*-[RhCl(CO)L₂]

	trans-[PtCl ₂ L ₂]		trans-[Rh0		
Ligand	$\Delta(^{31}\mathrm{P})^a$	$^{1}J_{\mathrm{PtP}}/\mathrm{Hz}$	$\varDelta(^{31}\mathrm{P})^a$	$^{1}J_{\rm RhP}/{ m Hz}$	v(CO)/cm ⁻¹
PPh ₃	25.4 ^{<i>b</i>}	2635 ^b	31.9	127	1964
$PPh_{2}(4-C_{6}H_{4}C_{6}F_{13})$			35.0	127	1982
$PPh_{2}(3-C_{6}H_{4}C_{6}F_{13})$	26.0	2646	34.5	128	1980
$P(4-C_6H_4C_6F_{13})_3$	28.8	2719	36.0	131	1993
$P(3-C_6H_4C_6F_{13})_3$	27.8	2723	37.8	132	1992
$PPh_2(2-C_6H_4CF_3)$	32.6°	2805	47.5^{d}	134	1957
$PPh_{2}(2-C_{6}H_{4}C_{6}F_{13})$	30.6 ^e	2826	46.4 ^{<i>f</i>}	136	1965
$P(4-C_6H_4C_6F_{13})_2(2-C_6H_4C_6F_{13})$	29.9 ^g	2873	46.4 ^{<i>h</i>}	139	1960/1984
$P(4-C_6H_4C_6F_{13})_2(2-C_6H_4C_6F_{13})$ ^a $\Delta(^{31}P) = \delta_{\text{metal complex}} - \delta_{\text{free ligand.}}^{b} Data taken from re$	29.9 ^s ef. 19. ^c $\frac{1}{2}$ $ ^{4}J_{\rm PF}$	$28/3$ + ${}^{6}J_{\rm PF} $ 9. d ${}^{1}/_{2} ^{4}$	46.4° $J_{\rm PF} + {}^{6}J_{\rm PF} $ 11.	$^{1}39$	$ 18.^{f} \frac{1}{2} ^{4}J_{\rm PF} + {}^{6}J_{\rm PF} 21.^{g} \frac{1}{2} ^{4}J_{\rm PF} +$

in the *ortho*-positions have a very similar effect on the ${}^{1}J_{PtP}$ coupling constants but the ${}^{1}J_{PtP}$ for the C₆F₁₃ moiety is slightly bigger because it is slightly more electron-withdrawing. However, there is a dramatic increase in ${}^{1}J_{PtP}$ when the perfluorohexyl group is moved from the *meta*- to the *ortho*-position in the ligand. In fact, ${}^{1}J_{PtP}$ is much bigger for PPh₂(2-C₆H₄C₆F₁₃) (2826 Hz) than for P(3-C₆H₄C₆F₁₃)₃ (2723 Hz). Although the inductive electron-withdrawing effect is expected to be greater at the *ortho* position than at the *meta* position, it is difficult to believe that this is the only reason that the ${}^{1}J_{PtP}$ increased so dramatically and it is postulated that the bigger cone angle of the *ortho*-substituted ligands will decrease the s character of the P–Pt bond and hence affect the ${}^{1}J_{PtP}$ coupling constant.

The series of *trans*-[RhCl(CO)L₂] {L = PPh₂(2-C₆H₄CF₃) 4, $PPh_2(2-C_6H_4C_6F_{13})$ **5** and $P(4-C_6H_4C_6F_{13})_2(2-C_6H_4C_6F_{13})$ **6**} complexes were prepared by the reaction of [RhCl(CO)₂]₂ with the free ligands. Virtual coupling in the ³¹P{¹H} NMR spectra was again observed because of the trans geometries giving rise to doublets of virtual septets for 4 and doublets of virtual quintets for both 5 and 6. The resonances in the ${}^{19}F{}^{1}H{}$ NMR spectra mirrored this effect with that for 4 appearing as a virtual triplet but only a broad singlet was observed for the α -CF₂ resonance in both 5 and 6. In the spectra of both 3 and 6 it is possible to distinguish between the ortho- and para-CF₃ resonances as well as the ortho α -CF₂ resonance at -99 ppm and the para α -CF₂ at -112 ppm. The four proton signals for the ortho-substituted aromatic ring can also be distinguished from the signals for the para-substituted ring. As seen for the series of *trans*-[PtCl₂L₂] complexes, there is an increase in both Δ ⁽³¹P) and ¹J_{RhP} within the *trans*-[RhCl(CO)L₂] complexes shown in Table 4 giving an indication of both the electronic and steric properties of the phosphines. Since the ${}^{1}J_{RhP}$ coupling constant for $PPh_2(2-C_6H_4C_6F_{13})$ (136 Hz) is much bigger than that for either $PPh_2(3-C_6H_4C_6F_{13})$ (128 Hz) or $P(3-C_6H_4C_6F_{13})_3$ (132 Hz) there is obviously a large steric effect as well as an electronic effect.

Previously, we have shown that as the number of perfluoroalkyl groups is increased in both the meta- and para-substituted series of phosphines then v(CO) is increased (Table 4) and this demonstrates that there is an increase in the π -acceptor ability of the phosphines.^{10,11} However, it is known that although v(CO) increases with decreasing basicity of the phosphine, it also decreases with increasing cone angle.²¹ Hence, for trans- $[RhCl(CO){PPh_2(2-C_6H_4C_6F_{13})}_2]$ 5 the increase in cone angle is cancelled out by the decrease in basicity making the value of v(CO) very similar to that for *trans*-[RhCl(CO)(PPh₃)₂]. In compound 4, however, the effect of the cone angle predominates slightly because PPh₂(2-C₆H₄CF₃) is slightly more basic than PPh₂(2-C₆H₄C₆F₁₃). However, the situation is not straightforward for compound 6 which, surprisingly, exhibits two carbonyl stretches in its IR spectrum at 1960 and 1984 cm^{-1} . Since compound **6** is analytically pure and has been fully characterised as a single species in solution by NMR spectroscopies, our only explanation for this curious observation is the presence of two geometric isomers in the solid-state giving rise to the two different carbonyl stretches. The only way that this could be possible is if in one of the two structures the two *ortho*perfluorohexyl groups are arranged on opposite sides of the Cl– Rh–CO axis in a similar way to that of the trifluoromethyl groups in the molecular structure of **4** (Fig. 8, *vide infra*), whilst in the other the *ortho*-perfluorohexyl groups are lined up on the same side of the Cl–Rh–CO axis in a similar fashion to that observed in the molecular structure of the platinum complex **2** (Fig. 6, *vide infra*).

Structural studies of 1, 2 and 4

The platinum complexes, trans-[PtCl₂{PPh₂(2-C₆H₄CF₃)}₂] **1** and trans-[PtCl₂{PPh₂(2-C₆H₄C₆F₁₃)}₂] **2**, have both been structurally characterised. The molecular structure of **1** is shown in Fig. 5. The platinum atom lies on a crystallographic centre of

Fig. 5 Molecular structure of *trans*- $[PtCl_2{PPh_2(2-C_6H_4CF_3)}_2]$ **1**. Primed atoms are generated by symmetry (1 - x, -y, 1 - z). Details as in Fig. 2.

symmetry and the trifluoromethyl groups are held on opposite sides of the P–Pt–P axis in a *trans*-configuration. Consequently, the geometry around the metal centre is very similar to both *trans*-[PtCl₂(PPh₃)₂]²² and *trans*-[PtCl₂{P(4-C₆H₄C₆F₁₃)₃]₂]¹¹ (Table 5). Although there are actually two unique molecules in the asymmetric unit of **2**, rather surprisingly, both perfluorohexyl groups in these unique molecules are held on the same side of the P–Pt–P axis occupying a *cis*-configuration (Fig. 6). Presumably, this is to maximise the number of attractive F ··· F interactions and hence set up large fluorous domains which appear to control the packing in these fluorousderivatised compounds (Fig. 7). Consequently there are eight unique intermolecular F ··· F interactions that are less than

Table 5 Selected bond lengths (Å) and angles (°) with estimated standard deviations (e.s.d.s) in parentheses for *trans*-[PtCl₂L₂] where $L = PPh_3$, P(4-C₆H₄C₆F₁₃)₃, PPh₂(2-C₆H₄CF₃) **1** and PPh₂(2-C₆H₄C₆F₁₃) **2**

	PPh3 ^a	$P(4-C_6H_4C_6F_{13})_3^{b}$	1	2		2	
Pt–Cl	2.2997(11)	2.331(2)	2.307(2)	2.3106(15)	2.3017(16)	2.3208(15)	2.2969(15)
Pt–P	2.3163(11)	2.330(3)	2.312(2)	2.3175(16)	2.3231(16)	2.3201(17)	2.3053(17)
P–C	1.819(3)		1.835(4)	1.826(3)	1.837(3)	1.836(3)	1.829(3)
P–C	1.819(3)		1.846(4)	1.835(3)	1.840(3)	1.842(4)	1.832(3)
P–C	1.820(3)	—	1.874(4) ^c	1.900(3) ^c	1.893(3) ^c	1.877(3) ^c	1.886(3) ^c
Cl-Pt-Cl	180.0	180.0	180.0	170.24(6)		174.53(6)	
Cl-Pt-P	92.12(4)	93.34	92.93(8)	91.04(6)	91.78(6)	90.36(6)	92.05(6)
Cl-Pt-P	87.88(4)	86.66(9)	87.07(8)	87.93(5)	89.55(5)	88.69(6)	88.60(6)
P–Pt–P	180.0	180.0	180.0	176.80(6)		175.93(6)	
C-P-Pt	111.97(10)	108.9(3)	108.52(19)	118.38(15)	121.08(14)	121.08(15)	119.66(15)
C-P-Pt	111.83(11)	116.2(3)	122.6(2)	106.88(15)	108.82(15)	109.70(16)	102.64(15)
C-P-Pt	117.60(11)	115.3(3)	$112.6(2)^{c}$	118.60(14) ^c	114.78(14) ^c	$111.60(14)^{c}$	118.49(14) ^c
C-P-C	106.49(14)	105.8(5)	102.5(3)	106.63(19)	106.4(2)	100.6(2)	108.6(2)
C-P-C	103.77(15)	101.5(5)	$104.8(3)^{c}$	101.54(19) ^c	$100.72(19)^{\circ}$	105.78(19) ^c	$102.3(2)^{c}$
C–P–C	104.23(15)	108.7(5)	104.0(3) ^c	103.36(19) ^{<i>c</i>}	103.29(19) ^c	106.80(19) ^{<i>c</i>}	103.88(19) ^c

^{*a*} Data taken from ref. 22. ^{*b*} Data taken from ref. 11. ^{*c*} Denotes the carbon of the aryl ring which contains the trifluoromethyl or the perfluorohexyl moiety.

Fig. 6 Molecular structure of one of the unique molecules of *trans*- $[PtCl_2{PPh_2(2-C_6H_4C_6F_{13})}_2]$ **2**. Details as in Fig. 2.

3 Å in the extended structure of **2**. The Cl–Pt–Cl bond angle is now significantly distorted to 170.24° in one of the molecules because the chloride ligands bend away from the steric bulk associated with the two perfluorohexyl groups held on the same side of the molecule. In the other unique molecule the distortion is not as dramatic but is still significant with a Cl–Pt–Cl bond angle of 174.53° and a P–Pt–P bond angle of 175.93°.

The structure of *trans*-[RhCl(CO){PPh₂(2-C₆H₄CF₃)}₂] **4** was also determined by single crystal X-ray diffraction (Fig. 8). The rhodium atom lies on a crystallographic centre of symmetry such that the carbonyl and chloride ligands are disordered which is not uncommon in these types of metal complexes. Similar to the structure of *trans*-[PtCl₂{PPh₂(2-C₆H₄CF₃)}₂] **1**, the *ortho*-trifluoromethyl groups in **4** are held on opposite sides of the P–Rh–P axis and consequently they do not interfere with the coordination geometry around the metal centre with all of the bond lengths and bond angles being very similar to those found in the structure of *trans*-[RhCl(CO)-(PPh₃)₂] (Table 6).²³

The cone angles of the two phosphines, $PPh_2(2-C_6H_4CF_3)$

Fig. 7 Extended structure of *trans*-[PtCl₂{PPh₂(2-C₆H₄C₆F₁₃)}₂] **2**. Short intermolecular $F \cdots F$ interactions are shown with dashed lines.

and PPh₂(2-C₆H₄C₆F₁₃), were calculated from the crystal structures, *trans*-[PtCl₂{PPh₂(2-C₆H₄CF₃)}₂] **1**, *trans*-[PtCl₂{PPh₂(2-C₆H₄C₆F₁₃)}₂] **2** and *trans*-[RhCl(CO){PPh₂(2-C₆H₄CF₃)}₂] **4**.²⁴ The same value was obtained for PPh₂(2-C₆H₄CF₃) from the structures **1** and **4** giving cone angles of 169°, but this value is much smaller than the previously reported value of 175°.¹⁸ Four different cone angles were measured for PPh₂(2-C₆H₄C₆F₁₃) from **2** because there are two unique molecules which contain two different phosphines in each case. These values were calculated to be 164, 166, 166 and 168°, giving an average value of 166°.

Conclusions

The two novel phosphines, $PPh_2(2-C_6H_4C_6F_{13})$ II and P(4-C₆H₄C₆F₁₃)₂(2-C₆H₄C₆F₁₃) V, were synthesised using established methodologies. The *ortho*-fluorous ponytails significantly increase the steric bulk of these triaryl ligands compared to the

Table 6 Selected bond lengths (Å) and angles (°) with estimated standard deviations (e.s.d.s) in parentheses for *trans*-[RhCl(CO)L₂] where $L = PPh_3$ and $PPh_2(2-C_6H_4CF_3)$ **4**

	PPh ₃ ^a		4
Rh–Cl	2.395(1)		2.401(2)
Rh–P	2.333(1)	2.327(1)	2.3279(6)
Rh–C	1.821(5)		1.736(6)
C–O	1.141(6)		1.153(7)
P–C	1.828(3)	1.820(3)	1.827(2)
P–C	1.839(3)	1.839(3)	1.8282(19)
P–C	1.848(4)	1.842(3)	1.8496(19) ^b
Cl-Rh-P	87.5(1)		86.91(7)
Cl-Rh-P	89.1(1)		93.09(7)
P-Rh-P	176.1(1)		180.0
P-Rh-C	92.1(2)		92.6(2)
P-Rh-C	91.4(2)		87.4(2)
Rh–P–C	116.4(1)	117.0(1)	109.13(7)
Rh–P–C	114.2(1)	109.8(1)	123.23(6)
Rh–P–C	112.7(1)	117.1(1)	$113.10(6)^{b}$
C-P-C	_ ``	_ ``	102.01(9)
C-P-C		_	$103.99(9)^{b}$
C-P-C			$103.35(9)^{b}$

^{*a*} Data taken from ref. 23. ^{*b*} Denotes the carbon of the aryl ring which contains the trifluoromethyl moiety.

Fig. 8 Molecular structure of *trans*-[RhCl(CO){PPh₂(2-C₆H₄CF₃)}₂] **4**. Primed atoms are generated by symmetry (1 - x, 1 - y, -z). Dashed bonds indicate disorder of Cl and CO groups. Details as in Fig. 2.

meta- and *para-*isomers and this large steric influence was illustrated by the exclusive formation of the *trans-*[PtCl₂L₂] complexes and in the carbonyl stretching frequencies of the *trans-*[RhCl(CO)L₂] complexes. Surprisingly, a slightly larger cone angle was measured for PPh₂(2-C₆H₄CF₃) (169°) from the crystal structures, *trans-*[PtCl₂{PPh₂(2-C₆H₄CF₃)}₂] **1** and *trans-*[RhCl(CO){PPh₂(2-C₆H₄CF₃)}₂] **4**, than for PPh₂(2-C₆H₄-C₆F₁₃) (166°) from the crystal structure of *trans-*[PtCl₂{PPh₂-(2-C₆H₄C₆F₁₃)}₂] **2**.

Experimental

Proton, ¹⁹F and ³¹P NMR spectroscopies were carried out on a Bruker ARX 250 spectrometer at 250.13, 235.34 and 101.26 MHz or on a Bruker DRX 400 spectrometer at 400.13, 376.50 and 161.98 MHz. All chemical shifts are quoted in ppm using the high-frequency positive convention; ¹H NMR spectra were referenced to external SiMe₄, ¹⁹F NMR spectra to external CFCl₃ and ³¹P NMR spectra to external 85% H₃PO₄. The IR spectra were recorded on a Digilab FTS40 Fourier-transform spectrometer at 4 cm⁻¹ resolution for the complexes as Nujol mulls held between KBr discs. Elemental analyses were performed by either Butterworth Laboratories Ltd. or the Elemental Analysis Service at the University of North London. Mass spectra were recorded on a Kratos Concept 1H mass spectrometer.

The compound 4-(tridecafluorohexyl)bromobenzene,⁹ the ligand PPh₂(2-C₆H₄CF₃)²⁵ and the complex *cis*-[PtCl₂(Me-CN)₂]²⁶ were prepared as described previously and the complex [RhCl(CO)₂]₂ (Aldrich) was used as supplied. Dichloromethane and perfluoro-1,3-dimethylcyclohexane (PP3) were each dried by refluxing over calcium hydride under nitrogen, distilled under nitrogen and stored in closed ampoules over molecular sieves. PP3 was also freezed/pumped/thawed three times to remove all dissolved gases. Hexane was dried by refluxing over potassium metal under nitrogen, distilled and was stored similarly. Diethyl ether was dried by refluxing over sodium metal under nitrogen, distilled and stored similarly.

Preparations

2-(Tridecafluorohexyl)bromobenzene I. A solution of C₆F₁₃I (39.42 g, 0.088 mol) in fluorobenzene (40 cm³) was added dropwise over 36 h to a stirred mixture of 2-bromoiodobenzene (25.00 g, 0.088 mol), copper powder (12.36 g, 0.194 mol), 2,2'-bipyridine (0.99 g, 6.3 mmol), DMSO (100 cm3), and fluorobenzene (75 cm³) at 70 °C. The reaction mixture was subsequently stirred for a further 72 h at this temperature. After cooling to room temperature, it was poured into a beaker containing ether (200 cm³) and water (200 cm³). After filtering, the organic layer was separated, washed with water (3 \times 100 cm³) and dried over MgSO₄. Distillation in vacuo gave the product I as a colourless, slightly viscous liquid (19.23 g, 46%) (bp 42-45 °C, 0.01 mmHg). $\delta_{\rm H}$ (CDCl₃) 7.34 (2H, um, 4Hand 5H-ArRf), 7.54 (1H, dd, ${}^{3}J_{HH}$ 8, ${}^{4}J_{HH}$ 2, 3H-ArRf), 7.67 (1H, dd, ${}^{3}J_{HH}$ 8, ${}^{4}J_{HH}$ 2, 3H-ArRf), 7.67 (1H, dd, ${}^{3}J_{HH}$ 8, ${}^{4}J_{HH}$ 1, 6H-ArRf); $\delta_{\rm F}$ -81.25 (3F, t, ${}^{4}J_{\rm FF}$ 10, CF₃), -107.02 (2F, t, ${}^{4}J_{\rm FF}$ 15, α -CF₂), -120.07 (2F, m, CF₂), -122.08 (2F, m, CF₂), -123.14 (2F, m, CF₂), -126.52 (2F, m, CF₂); accurate *m*/*z*: Found 473.9285; Calcd. 473.9288; m/z (EI) 474/476 (M⁺, 48%), 205/207 (100), 126 (33), 69 (11).

PPh₂(2-C₆H₄C₆F₁₃) II. n-Butyllithium (8.0 cm³, 1.6 M in hexane, 0.013 mol) in diethyl ether (25 cm³) was added dropwise over 1 h to 2-(tridecafluorohexyl)bromobenzene (6.17 g, 0.013 mol) stirring under nitrogen in diethyl ether (75 cm³) at -60 °C and the reaction mixture was stirred at this temperature for 1 h. A solution of chlorodiphenylphosphine (2.35 cm³, 0.013 mol) in diethyl ether (25 cm³) was then added dropwise over 1 h to the reaction mixture stirring at -60 °C before being allowed to warm slowly to room temperature over 12 h. The yellow solution was then hydrolysed with a 10% ammonium chloride solution (100 cm³), the organic layer was collected, washed with water $(2 \times 100 \text{ cm}^3)$ and finally dried over MgSO₄. The solvent was removed in vacuo and the dense, viscous liquid obtained was then dissolved in the minimum volume of light petroleum (bp 40-60 °C), before being passed through an alumina column using light petroleum (bp 40-60 °C) as the eluent. After the solvent was removed, the colourless viscous liquid was distilled in a Kugelröhr oven (120-124 °C, 0.04 mmHg) to give the product as a white solid (3.19 g, 42%). (Found: C, 49.4; H, 2.4; P, 5.4. C₂₄H₁₄F₁₃P requires C, 49.7; H, 2.4; P, 5.3%); $\delta_{\rm P}$ (CDCl₃) -6.7 (ttt, ${}^{4}J_{\rm PF}$ 99, ${}^{5}J_{\rm PF}$ 49, ${}^{6}J_{\rm PF}$ 4); δ_H 7.13 (5H, um, ArH's), 7.25 (5H, um, ArH's), 7.37 (3H, um, ArH's), 7.58 (1H, um, 6H-ArRf); ¹H{³¹P} 7.13 (5H, um, ArH's), 7.25 (5H, um, ArH's), 7.37 (3H, um, ArH's), 7.59 (1H, br d, ${}^{3}J_{\text{HH}}$ 7, 6H-ArRf); δ_{F} -81.22 (3F, t, ${}^{4}J_{\text{FF}}$ 10, CF₃), -99.95 (2F, dt, ${}^{4}J_{\text{PF}}$ 99, ${}^{4}J_{\text{FF}}$ 15, α -CF₂), -119.53 (2F, dm, ${}^{5}J_{\text{PF}}$ 47, β -CF₂), -121.82 (2F, m, CF₂), -123.05 (2F, m, CF₂), -126.44 (2F, m, CF₂); *m/z* (EI) 581 (M⁺, 55%).

 $Ph_2P(O)(2-C_6H_4C_6F_{13})$ IIb. Crystals of $Ph_2P(O)(2-C_6H_4-C_6F_{13})$ IIb suitable for X-ray diffraction were grown from an

ether–hexane solution of $PPh_2(2\text{-}C_6H_4C_6F_{13})$ left to stand for several weeks.

Et₂NP(4-C₆H₄C₆F₁₃)₂ III. *n*-Butyllithium (18.9 cm³, 1.6 M solution in hexane, 0.030 mol) in diethyl ether (50 cm³) was added dropwise over 1 h to a stirred solution of 4-(tridecafluorohexyl)bromobenzene (14.40 g, 0.030 mol) in ether (50 cm³) at -78 °C and the reaction mixture was stirred at this temperature for a further 1 h. Diethylphosphoramidous dichloride, Et₂NPCl₂, (2.64 g, 0.015 mol) in ether (20 cm³), was then added dropwise to the reaction mixture over 1 h at -78 °C before allowing the reaction mixture to warm slowly to room temperature over a 12 h period. The cream coloured solution was filtered and the solvent removed in vacuo to isolate the Et₂NP(4-C₆H₄C₆F₁₃)₂ intermediate. (Found: C, 37.1; H, 2.0; N, 1.9; P, 3.9. C₂₈H₁₈F₂₆NP requires C, 37.6; H, 2.0; N, 1.9; P, 3.5%); $\delta_{\rm P}$ (CDCl₃) 60.2 (s); $\delta_{\rm H}$ 0.57 (6H, t, ${}^{3}J_{\rm HH}$ 7, CH₃), 2.65 (4H, m, CH₂), 7.05 (4H, dd, ${}^{3}J_{HH}$ 8, ${}^{3}J_{HP}$ 7, 2-ArH), 7.15 (4H, d, ${}^{3}J_{HH}$ 8, 3-ArH); ${}^{1}H{}^{31}P$ 0.57 (6H, t, ${}^{3}J_{HH}$ 7, CH₃), 2.65 (4H, q, ${}^{3}J_{\rm HH}$ 7, CH₂), 7.05 (4H, d, ${}^{3}J_{\rm HH}$ 8, 2-ArH), 7.15 (4H, d, ${}^{3}J_{\rm HH}$ 8, 3-ArH); $\delta_{\rm F} = 81.64$ (3F, t, ${}^{4}J_{\rm FF}$ 10, CF₃), -111.07 (2F, t, ${}^{4}J_{\rm FF}$ 14, α-CF₂), -121.90 (2F, m, CF₂), -122.18 (2F, m, CF₂), -123.33 (2F, m, CF₂), -126.75 (2F, m, CF₂); *m/z* (EI) 894 (MH⁺, 36%), 837 (45).

CIP(4-C₆H₄C₆F₁₃)₂ **IV**. Hydrogen chloride was passed over a stirred solution of Et₂NP(4-C₆H₄C₆F₁₃)₂ **III** in hexane (120 cm³) and diethyl ether (120 cm³) for 25 min. The solution turned from golden yellow to white indicating the formation of the amine salt, Et₂NH₂⁺Cl⁻. The reaction mixture was then filtered through celite under an atmosphere of nitrogen and the solvent was removed *in vacuo* to produce a creamy white solid. The chlorophosphine was purified by distillation in a Kugelröhr oven (160–175 °C, 0.04 mmHg) and the product was isolated as a pure white crystalline solid (5.28 g, 41%). (Found: C, 33.8; H, 1.0; P, 3.9. C₂₄H₈ClF₂₆P requires C, 33.6; H, 0.9; P, 3.6%); $\delta_{\rm P}$ (CDCl₃) 75.3 (s); $\delta_{\rm H}$ 7.58 (4H, d, ³J_{HH} 8, 3H-ArRf), 7.63 (4H, m, 2H-ArRf); ¹H{³¹P} 7.58 (4H, d, ³J_{HH} 8, 3H-ArRf), 7.63 (4H, d, ³J_{HH} 8, 2H-ArRf); $\delta_{\rm F}$ -81.25 (3F, t, ⁴J_{FF} 10, CF₃), -111.51 (2F, t, ⁴J_{FF} 14, α-CF₂), -122.05 (2F, m, CF₂), -122.16 (2F, m, CF₂), -123.23 (2F, m, CF₂), -126.55 (2F, m, CF₂); *m*/*z* (EI) 856/858 (M⁺, 30%), 695 (22), 445 (100).

P(4-C₆H₄C₆F₁₃)₂(2-C₆H₄C₆F₁₃) **V**. This was synthesised using the method that was used to prepare PPh₂(2-C₆H₄C₆F₁₃) **II** using *n*-butyllithium (3.6 cm³, 1.6 M in hexane, 5.7 mmol), 2-(tridecafluorohexyl)bromobenzene (2.71 g, 5.7 mmol) and a suspension of ClP(4-C₆H₄C₆F₁₃)₂ (4.9 g, 5.7 mmol) in diethyl ether (100 cm³). The product was obtained as a white solid (2.39 g, 34%) (198–200 °C, 0.04 mmHg). (Found: C, 35.9; H, 1.0; P, 2.6. C₃₆H₁₂F₃₉P requires C, 35.55; H, 1.0; P, 2.55%); $\delta_{\rm P}$ (CDCl₃) –6.3 (tt, ⁴J_{PF} 98, ⁵J_{PF} 49); $\delta_{\rm H}$ 7.15 (1H, dd, ³J_{HH} 7, ⁴J_{HH} 3, 3-ArH in *o*-ArRf), 7.35 (4H, dd, ³J_{HH} 8, ³J_{HP} 7, 2-ArH in *p*-ArRf), 7.50 (1H, m, ArH in *o*-ArRf), 7.57 (4H, d, ³J_{HH} 8, 3-ArH in *p*-ArRf); 7.57 (1H, m, ArH in *o*-ArRf), 7.74 (1H, m, ArH in *o*-ArRf); $\delta_{\rm F}$ -81.25 (9F, t, ⁴J_{FF} 10, *o*- and *p*-CF₃), -100.14 (2F, dt, ⁴J_{PF} 100, ⁴J_{FF} 13, *o*-α-CF₂), -111.46 (4F, t, ⁴J_{FF} 15, *p*-α-CF₂), -119.54 (2F, d of m, ⁵J_{PF} 47, *o*-β-CF₂), -121.95 (6F, m, *o*- and *p*-CF₂'s), -122.25 (4F, m, *p*-CF₂'s), -123.25 (6F, m, *o*- and *p*-CF₂'s), -126.60 (6F, m, *o*- and *p*-CF₂'s); *m*/z (EI) 1216 (M⁺, 100%), 1197 (18), 998 (34), 339 (10).

 $PPh_2(2-C_6H_4CF_3)$ VI and $Ph_2P(O)(2-C_6H_4CF_3)$ VIb. Crystals of $PPh_2(2-C_6H_4CF_3)$ VI and $Ph_2P(O)(2-C_6H_4CF_3)$ VIb suitable for X-ray diffraction were grown from an ether–hexane solution of $PPh_2(2-C_6H_4CF_3)$ VI left to stand for several weeks.

trans-[PtCl₂{PPh₂(2-C₆H₄CF₃)}₂] **1.** The ligand (0.300 g, 0.91 mmol) and [PtCl₂(MeCN)₂] (0.150 g, 0.43 mmol) were refluxed for 4 h in dichloromethane (40 cm³). After cooling to room

temperature the volume of dichloromethane was reduced to approximately 15 cm³ and hexane was added to precipitate out the product. The pale yellow solid was filtered off and washed with hexane. Yield 0.27 g, 68%. Crystals suitable for X-ray diffraction were grown from dichloromethane. (Found: C, 47.6; H, 2.7; P, 6.3. $C_{38}H_{28}Cl_2F_6P_2Pt \cdot \frac{1}{2}Cl_2$ requires C, 47.7; H, 3.0; P, 6.4%); $\delta_P(CD_2Cl_2)$ 21.9 (A part of an AA'M₃M'₃X spectrum, ${}^{1}J_{PtP}$ 2805, ${}^{1}_{2}|{}^{4}J_{PF}$ + ${}^{6}J_{PF}|$ 9); δ_H 7.00 (1H, AB pattern, 6H-ArCF₃), 7.40 (8H, um, ArH's), 7.66 (1H, dd, ${}^{3}J_{HH}$ 8, ${}^{4}J_{HP}$ 1, 3H-ArCF₃), 7.82 (4H, AB pattern, 2,6-ArH's); ${}^{1}H\{{}^{31}P\}$ 7.00 (1H, d, ${}^{3}J_{HH}$ 8, 6H-ArCF₃), 7.40 (8H, um, ArH's), 7.66 (1H, d, ${}^{3}J_{HH}$ 8, 3H-ArCF₃), 7.82 (4H, d, ${}^{3}J_{HH}$ 7, 2,6-ArH's); δ_F -53.59 (vt, ${}^{1}_{2}|{}^{4}J_{PF}$ + ${}^{6}J_{PF}|$ 9); m/z (FAB) 925 (M⁺), 890 (M - Cl), 853 (M - 2Cl).

trans-[PtCl₂{PPh₂(2-C₆H₄C₆F₁₃)₂] 2. Complex 2 was prepared similarly to 1 from the ligand (0.300 g, 0.52 mmol) and [PtCl₂(MeCN)₂] (0.086 g, 0.25 mmol). Yield 0.26 g, 73%. Crystals suitable for X-ray diffraction were grown from acetone. (Found: C, 40.3; H, 1.95; P, 4.3. C₄₈H₂₈Cl₂F₂₆P₂Pt requires C, 40.4; H, 2.0; P, 4.3%); $\delta_{\rm P}$ (CD₂Cl₂) 23.9 (A part of an AA'M₂M'₂X spectrum, ¹J_{PtP} 2826, ¹/₂ |⁴J_{PF} + ⁶J_{PF}| 18); $\delta_{\rm H}$ 7.15 (1H, AB pattern, 6H-ArCF₃), 7.40 (8H, um, ArH's), 7.60 (1H, br dd, ³J_{HH} 8, ⁴J_{HP} 1, 3H-ArRf), 7.86 (4H, AB pattern, 2,6-ArH's); ¹H{³¹P} 7.16 (1H, d, ³J_{HH} 8, 6H-ArRf), 7.39 (8H, um, ArH's), 7.60 (1H, d, ³J_{HH} 8, 3H-ArRf), 7.86 (4H, d, ³J_{HH} 7, 2,6-ArH's); $\delta_{\rm F}$ -81.23 (3F, t, ⁴J_{FF} 10, CF₃), -99.40 (2F, br s, a-CF₂), -119.07 (2F, m, CF₂), -121.73 (2F, m, CF₂), -123.08 (2F, m, CF₂), -126.47 (2F, m, CF₂); *m*/*z* (FAB) 1426 (MH⁺), 1390 (M - Cl), 1353 (M - 2Cl).

trans-[PtCl₂{P(4-C₆H₄C₆F₁₃)₂(2-C₆H₄C₆F₁₃)₂] 3. Complex 3 was prepared similarly to 1 from the ligand (0.300 g, 0.25 mmol) and [PtCl₂(MeCN)₂] (0.043 g, 0.12 mmol). Yield 0.26 g, 77%. (Found: C, 31.3; H, 0.9. C₇₂H₂₄F₇₈P₂Cl₂Pt requires C, 32.0; H, 0.9%); $\delta_{\rm P}$ (THF, d⁶-benzene insert) 23.6 (A part of an AA'M₂M'₂X spectrum, ¹J_{PtP} 2873, ¹/₂ |⁴J_{PF} + ⁶J_{PF} | 20); $\delta_{\rm H}$ (d⁶-acetone) 7.48 (1H, m, 6-ArH in *o*-ArRf), 7.71(1H, t, ³J_{HH} 8, ArH in *o*-ArRf), 7.81 (1H, t, ³J_{HH} 8, ArH in *o*-ArRf), 7.85 (1H, m, 3-ArH in *o*-ArRf), 7.88 (4H, d, ³J_{HH} 8, 3-ArH in *p*-ArRf), 8.28 (4H, m, 2-ArH in *p*-ArRf); $\delta_{\rm F}$ (d⁶-acetone) -82.20 (6F, t, ⁴J_{FF} 10, *p*-CF₂), -112.03 (4F, um, *p*-α-CF₂), -120.24 (2F, m, *o*-CF₂), -122.51 (10F m, *o*- and *p*-CF₂'s), -123.8 (4F, m, *p*-CF₂), -124.04 (2F, m, *o*-CF₂), -127.26 (4F, m, *p*-CF₂), -127.46 (2F, m, *o*-CF₂); *m*/z (FAB) 2627 (M - 2Cl).

trans-[RhCl(CO){PPh₂(2-C₆H₄CF₃)}] 4. The ligand (0.349 g, 1.06 mmol) and [RhCl(CO)₂]₂ (0.100 g, 0.257 mmol) were stirred under an atmosphere of nitrogen for 1.5 h in dichloromethane (50 cm³). The solvent was removed *in vacuo* and the resulting product was washed with light petroleum (bp 40–60 °C) to give a yellow powder (0.195 g, 46%). Crystals suitable for X-ray diffraction were grown from a dichloromethane–hexane solution. (Found: C, 56.6; H, 3.3; P, 6.9. C₃₉H₂₈ClF₆OP₂Rh requires C, 56.6; H, 3.4; P, 7.5%); *v*_{max}/cm⁻¹ (CO) 1957 (Nujol); $\delta_{\rm P}$ (CDCl₃) 36.8 (A part of AA'M₃M'₃X spectrum, ¹J_{RhP} 134, ^{1/2} [⁴J_{PF} + ⁶J_{PF}] 10); $\delta_{\rm H}$ 7.04 (1H, AB pattern, 6H-ArCF₃), 7.36 (8H, um, ArH's); ⁷T₂ (5H, um, ArH's); 7.72 (5H, um, ArH's); 7.72 (5H, um, ArH's); $\delta_{\rm F}$ –53.3 (vt, ^{1/2} [⁴J_{PF} + ⁶J_{PF}] 11); *m*/z (FAB) 825/827 (M⁺), 797/799 (M – CO), 790 (M – Cl), 762 (M – COCI).

trans-[RhCl(CO){PPh₂(2-C₆H₄C₆F₁₃)₂] **5.** Complex **5** was prepared similarly to complex **4** using the ligand (0.176 g, 0.3 mmol) and [RhCl(CO)₂]₂ (0.025 g, 0.065 mmol). Yield 0.118 g, 68%. (Found: C, 44.2; H, 2.05; P, 4.8. C₄₉H₂₈ClF₂₆O-P₂Rh requires C, 44.3; H, 2.1; P, 4.7%); $v_{\text{max}}/\text{cm}^{-1}$ (CO) 1965 (Nujol); δ_{P} (CDCl₃) 39.7 (A part of AA'M₂M'₂X spectrum, ¹J_{RhP} 136, ¹/₂ |⁴J_{PF} + ⁶J_{PF}[21); δ_{H} 7.27–7.45 (8H, um, ArH's),

 $\begin{array}{l} \textbf{Table 7} \quad Crystallographic data for Ph_2P(O)(2-C_6H_4C_6F_{13}) \textbf{IIb}, PPh_2(2-C_6H_4CF_3) VI, Ph_2P(O)(2-C_6H_4CF_3) VIb, trans-[PtCl_2{PPh_2(2-C_6H_4CF_3)}_2] \textbf{1}, trans-[PtCl_2{PPh_2(2-C_6H_4C_6F_{13})}_2] \textbf{2} and trans-[PtCl_2{PPh_2(2-C_6H_4CF_3)}_2] \textbf{4} \end{array} \right.$

	IIb	VI	VIb	1	2	4
Formula	C ₂₄ H ₁₄ F ₁₃ OP	C ₁₉ H ₁₄ F ₃ P	C ₁₉ H ₁₄ F ₃ OP	C ₃₈ H ₂₈ Cl ₂ F ₆ P ₂ Pt	C48H28Cl2F26P2Pt	C ₃₉ H ₂₈ ClF ₆ OP ₂ Rh
М	596.32	330.27	346.27	926.53	1426.63	826.91
System	Orthorhombic	Monoclinic	Triclinic	Monoclinic	Triclinic	Monoclinic
Space group	Pbca	$P2_1/c$	$P\overline{1}$	$P2_1/n$	$P\overline{1}$	$P2_1/n$
alÅ	10.942(1)	17.478(2)	8.488(11)	11.415(5)	12.280(2)	11.469(1)
b/Å	10.023(1)	10.490(1)	10.057(12)	11.238(8)	18.509(2)	11.185(1)
c/Å	42.863(4)	18.570(2)	11.032(14)	13.819(7)	23.735(4)	13.837(1)
a/°	90	90	63.97(3)	90	78.74(1)	90
βl°	90	107.22(1)	76.31(2)	101.91(4)	77.80(1)	101.00(1)
y/°	90	90	72.82(3)	90	88.85(1)	90
V/Å ³	4701.0(8)	3251.9(6)	802.1(17)	1734.6(17)	5170.1(13)	1742.4(3)
T/K	160	180	180	190	190	180
Ζ	8	8 <i>a</i>	2	2^{b}	4^a	2 ^{<i>b</i>}
μ (Mo-K α)/mm ⁻¹	0.238	0.195	0.206	4.351	3.008	0.723
refln. measured	35823	17858	4588	3474	20707	9685
refln. independent	4877	6377	3095	2997	20219	3402
Rint	0.023	0.042	0.196	0.048	0.020	0.051
refln. $\{I > 2\sigma(I)\}$	4065	3733	1293	2148	13740	3045
$\theta_{\rm max}$, % complete	27, 99.7	26, 99.8	26, 98.3	25, 97.6	26, 99.5	26, 99.7
$R1 \{I > 2\sigma(I)\}$	0.051	0.042	0.083	0.048	0.048	0.030
$wR2(F^2)$ all data	0.157	0.083	0.221	0.128	0.094	0.0736

^{*a*} There are two unique molecules in the asymmetric unit. ^{*b*} The metal atom is located on a centre of symmetry with half a molecule in the asymmetric unit.

7.48 (1H, t, ${}^{3}J_{\rm HH}$ 8, ArH in ArRf), 7.71 (1H, d, ${}^{3}J_{\rm HH}$ 8, 3H-ArRf), 7.83 (4H, AB pattern, 2,6-ArH's); ${}^{1}{\rm H}\{{}^{31}{\rm P}\}$ 7.27–7.45 (8H, um, ArH's), 7.48 (1H, t, ${}^{3}J_{\rm HH}$ 8, ArH in ArRf), 7.71 (1H, d, ${}^{3}J_{\rm HH}$ 8, 3H-ArRf), 7.83 (4H, d, ${}^{3}J_{\rm HH}$ 8, 2,6-ArH's); $\delta_{\rm F}$ -81.36 (3F, t, ${}^{4}J_{\rm FF}$ 10, CF₃), -99.03 (2F, br s, α -CF₂), -118.68 (2F, m, CF₂), -122.12 (2F, m, CF₂), -123.28 (2F, m, CF₂), -126.72 (2F, m, CF₂); *m/z* (FAB) 1300 (M – CO), 1292 (M – Cl), 1264 (M – COC1).

trans-[RhCl(CO){ $P(4-C_6H_4C_6F_{13})_2(2-C_6H_4C_6F_{13})_2$] 6. Complex 6 was prepared similarly to complex 4 using the ligand (0.375 g, 0.31 mmol) and [RhCl(CO)₂]₂ (0.029 g, 0.073 mmol). Yield 0.31 g, 77%. (Found: C, 33.3; H, 0.7; P, 2.7. C₇₃H₂₄F₇₈P₂-ClORh requires C, 33.7; H, 0.9; P, 2.4%); v_{max}/cm⁻¹ (CO) 1960 and 1984 (Nujol); $\delta_{\rm P}$ (PP3, d⁶-benzene insert) 40.1 (A part of AA'M₂M'₂X spectrum, ${}^{1}J_{RhP}$ 139, ${}^{1}/_{2}$ | ${}^{4}J_{PF}$ + ${}^{6}J_{PF}$ | 22); δ_{H} (d⁶acetone) 7.37 (1H, m, 6-ArH in o-ArRf), 7.56 (1H, t, ³J_{HH} 8, ArH in o-ArRf), 7.65 (1H, m, ArH in o-ArRf), 7.69 (4H, d, ³J_{HH} 8, 3-ArH in *p*-ArRf), 7.77 (1H, br m, 3-ArH in *o*-ArRf), 8.05 (4H, m, 2-ArH in *p*-ArRf); ¹H{³¹P} NMR (d⁶-acetone) 7.37 (1H, d, ³J_{HH} 8, 6-ArH in *o*-ArRf), 7.56 (1H, t, ³J_{HH} 8, ArH in o-ArRf), 7.65 (1H, m, ArH in o-ArRf), 7.69 (4H, d, ³J_{HH} 8, 3-ArH in *p*-ArRf), 7.77 (1H, d, ³J_{HH} 7, 3-ArH in *o*-ArRf), 8.05 (4H, d, ${}^{3}J_{\text{HH}}$ 8, 2-ArH in *p*-ArRf); δ_{F} (diethyl ether, d⁶-benzene insert) -81.74 (6F, t, ${}^{4}J_{FF}$ 10, p-CF₃), -81.93 (3F, t, ${}^{4}J_{FF}$ 10, o-CF₃), -98.42 (2F, um, o- α -CF₂), -111.60 (4F, t, ${}^{4}J_{FF}$ 14, p-α-CF₂), -118.69 (2F, m, o-CF₂), -121.88 (10F, m, CF₂'s), -123.03 (6F, m, CF₂), -126.72 (6F m, CF₂); m/z (FAB) 2563 (M - Cl).

Crystal structure determinations

Table 7 summarises the crystallographic data for compounds **IIb**, **VI** and **VIb** and complexes **1**, **2** and **4**. Data for **IIb**, **VI**, **VIb** and **4** were measured on a Bruker SMART diffractometer with a 2K CCD area detector. Data for **1** and **2** were measured on a Bruker P4 diffractometer. All data were collected using graphite monochromated Mo-K α radiation ($\lambda = 0.71073$ Å). Semi-empirical absorption corrections, based on comparison of Laue equivalents, were applied to the data sets. The structures were solved by direct methods and refined by full-matrix least squares cycles on F^2 for all data, using SHELXTL.²⁷ All non hydrogen atoms were refined with anisotropic displacement parameters. All hydrogen atoms were included in refinement

cycles riding on bonded atoms. Compound VI and complex 2 both crystallised with two independent molecules in the asymmetric unit.

CCDC reference numbers 168966-168971.

See http://www.rsc.org/suppdata/dt/b1/b107390g/ for crystallographic data in CIF or other electronic format.

Acknowledgements

We thank the Royal Society (E. G. H. and A. M. S.) for financial support.

References

- 1 I. T. Horváth and J. Rábai, Science, 1994, 266, 72; US Pat., 5 463 082, 1995.
- I. T. Horváth, Acc. Chem. Res., 1998, 31, 641; M. Cavazzini,
 F. Montanari, G. Pozzi and S. Quici, J. Fluorine Chem., 1999, 94, 183;
 R. H. Fish, Chem. Eur. J., 1999, 5, 1677;
 E. de Wolf, G. van Koten and B.-J. Deelman, Chem. Soc. Rev., 1999, 28, 37;
 E. G. Hope and A. M. Stuart, J. Fluorine Chem., 1999, 100, 75.
- T. Horváth, G. Kiss, R. A. Cook, J. E. Bond, P. A. Stevens, J. Rábai and E. J. Mozeleski, *J. Am. Chem. Soc.*, 1998, **120**, 3133;
 A. M. Stuart, D. Gudmunsen, E. G. Hope, G. P. Schwarz, D. F. Foster and D. J. Cole-Hamilton, *International Pat.*, WO 00/33956, 2000.
- 4 B. Richter, A. L. Spek, G. van Koten and B.-J. Deelman, J. Am. Chem. Soc., 2000, **122**, 3945; D. Rutherford, J. J. J. Juliette, C. Rocaboy, I. T. Horváth and J. A. Gladysz, Catal. Today, 1998, **42**, 381.
- 5 E. G. Hope, R. D. W. Kemmitt, D. R. Paige and A. M. Stuart, *J. Fluorine Chem.*, 1999, **99**, 197.
- 6 J. J. J. Juliette, D. Rutherford, I. T. Horváth and J. A. Gladysz, J. Am. Chem. Soc., 1999, **121**, 2696.
- S. Colonna, N. Gaggero, F. Montanari, G. Pozzi and S. Quici, Eur. J. Org. Chem., 2001, 181; M. Cavazzini, A. Manfredi, F. Montanari, S. Quici and G. Pozzi, Chem. Commun., 2000, 2171; B. Betzemeier, M. Cavazzini, S. Quici and P. Knochel, Tetrahedron Lett., 2000, 41, 4343; T. Nishimura, Y. Maeda, N. Kakiuchi and S. Uemura, J. Chem. Soc., Perkin Trans. 1, 2000, 4301; B. Betzemeier, F. Lhermitte and P. Knochel, Synlett, 1999, 489; B. Betzemeier, F. Lhermitte and P. Knochel, Tetrahedron Lett., 1998, 39, 6667; I. Klement, H. Lütjens and P. Knochel, Angew. Chem., Int. Ed. Engl., 1997, 36, 1454.
- 8 S. Schneider and W. Bannwarth, *Helv. Chim. Acta*, 2001, **84**, 735; A. G. M. Barrett, D. C. Braddock, D. Catterick, D. Chadwick, J. P. Henschke and R. M. McKinnell, *Synlett*, 2000, 847; A. Endres and G. Maas, *Tetrahedron Lett.*, 1999, **40**, 6365; R. Kling, D. Sinou,

G. Pozzi, A. Choplin, F. Quignard, S. Busch, S. Kainz, D. Koch and W. Leitner, *Tetrahedron Lett.*, 1998, **39**, 9439; B. Betzemeier and P. Knochel, *Angew. Chem., Int. Ed. Engl.*, 1997, **36**, 2623.

- 9 P. Bhattacharyya, D. Gudmunsen, E. G. Hope, R. D. W. Kemmitt, D. R. Paige and A. M. Stuart, J. Chem. Soc., Perkin Trans. 1, 1997, 3609.
- 10 E. G. Hope, R. D. W. Kemmitt, D. R. Paige, A. M. Stuart and D. R. W. Wood, *Polyhedron*, 1999, 18, 2913.
- 11 J. Fawcett, E. G. Hope, R. D. W. Kemmitt, D. R. Paige, D. R. Russell and A. M. Stuart, J. Chem. Soc., Dalton Trans., 1998, 3751.
- 12 P. Bhattacharyya, B. Croxtall, J. Fawcett, J. Fawcett, D. Gudmunsen, E. G. Hope, R. D. W. Kemmitt, D. R. Paige, D. R. Russell, A. M. Stuart and D. R. W. Wood, *J. Fluorine Chem.*, 2000, **101**, 247.
- 13 G. R. Miller, A. W. Yankowsky and S. O. Grim, J. Chem. Phys., 1969, 51, 3185.
- 14 S. O. Grim and A. W. Yankowsky, *Phosphorus, Sulfur Relat. Elem.*, 1977, 3, 191.
- 15 J. A. Thomas and T. A. Hamor, *Acta Crystallogr., Sect. C*, 1993, **49**, 355.
- 16 B. J. Dunne and A. G. Orpen, *Acta Crystallogr., Sect. C*, 1991, **47**, 345.

- 17 F. R. Hartley, *The Chemistry of Platinum and Palladium*, Applied Science, London, 1973, p. 456.
- 18 W. P. Shum and J. F. White, US Pat., 4,612,390, 1986.
- 19 R. G. Goel, Inorg. Nucl. Chem. Lett., 1979, 15, 437.
- 20 C. J. Cobley and P. G. Pringle, Inorg. Chim. Acta, 1997, 265, 107.
- 21 C. Corcoran, J. Fawcett, S. Friedrichs, J. H. Holloway, E. G. Hope, D. R. Russell, G. C. Saunders and A. M. Stuart, J. Chem. Soc., Dalton Trans., 2000, 161.
- 22 M. H. Johansson and S. Otto, Acta Crystallogr., Sect. C, 2000, 56, e12.
- 23 A. L. Rheingold and S. J. Geib, *Acta Crystallogr., Sect. C.*, 1987, **43**, 784.
- 24 T. E. Muller and D. M. P. Mingos, *Transition Met. Chem.*, 1995, **20**, 533.
- 25 K. C. Eapen and C. Tamborski, J. Fluorine Chem., 1980, 15, 239.
- 26 G. Pacchioni and P. S. Bagus, Inorg. Chem., 1992, 31, 4391.
- 27 G. M. Sheldrick, SHELXTL, an integrated system for solving, refining and displaying crystal structures, version 5.10, Bruker Analytical X-ray Systems, Madison, WI, USA, 1997.